Single cell & single molecule analysis of cancer Michael Schatz

October 22, 2015 JHU Genomics Symposium

Outline

I. Single Molecule Sequencing

Long read sequencing of a breast cancer cell line

2. Single Cell Copy Number Analysis

Intra-tumor heterogeneity and metastatic progression

Sequence Assembly Problem

I. Shear & Sequence DNA

- 2. Construct assembly graph from overlapping reads
 - ...AGCCTAGGGATGCGCGACACGT

GGATGCGCGACACGTCGCATATCCGGTTTGGTCAACCTCGGACGGAC

CAACCTCGGACGGACCTCAGCGAA...

3. Simplify assembly graph

On Algorithmic Complexity of Biomolecular Sequence Assembly Problem Narzisi, G, Mishra, B, Schatz, MC (2014) Algorithms for Computational Biology. Lecture Notes in Computer Science. Vol. 8542

Assembly Complexity

Assembly Complexity

Assembly Complexity

The advantages of SMRT sequencing Roberts, RJ, Carneiro, MO, Schatz, MC (2013) *Genome Biology*. 14:405

Genomics Arsenal in the Year 2015

Long Read Sequencing: De novo assembly, SV analysis, phasing

Long Span Sequencing: Chromosome Scaffolding, SV analysis, phasing

PacBio SMRT Sequencing

Imaging of fluorescently phospholinked labeled nucleotides as they are incorporated by a polymerase anchored to a Zero-Mode Waveguide (ZMW).

Time

http://www.pacificbiosciences.com/assets/files/pacbio_technology_backgrounder.pdf

Single Molecule Sequences

"Corrective Lens" for Sequencing

PacBio Assembly Algorithms

PacBioToCA

A - Support
Constant of the second se
+

PB|elly

Gap Filling and Assembly Upgrade

English et al (2012) PLOS One. 7(11): e47768

	210013
/ -	
	1
AND ADDRESS OF TAXABLE	100 1 101 101 101 101 100
THE OWNERS CONTRACTOR	100 000 000 000 000
* 63	* 12
COD COD	CBC-
0	
	C
1	1
d ca	100

Hybrid/PB-only Error Correction

Koren, Schatz, et al (2012) Nature Biotechnology. 30:693–700

PB-only Correction & Polishing

Chin et al (2013) Nature Methods. 10:563–569

< 5x

PacBio Coverage

3rd Gen Long Read Sequencing

3rd Gen Long Read Sequencing

3rd Gen Long Read Sequencing

SK-BR-3

Most commonly used Her2-amplified breast cancer

Aria Nattestad

(Davidson et al, 2000)

Can we resolve the complex structural variations, especially around Her2?

Ongoing collaboration between CSHL and OICR to *de novo* assemble the complete cell line genome with PacBio long reads

PacBio read length distribution

Genome Wide Coverage Analysis

Genome-wide coverage averages around 54X

Coverage per chromosome varies greatly as expected from previous karyotyping results

Structural Variation Analysis

Assembly-based

Split-Read based

~ 11,000 local variants 50 bp < size < 10 kbp 350 long-range variants (>10kb distance)

Long Range Variations in SK-BR-3

Fritz Sedazeck

Analysis by Sniffles

- 350 variants >= 10kbp
- Requires 10 split reads broken within a 200 bp interval on both sides of the translocation

8 Mb

SplitThreader Graphical threading to retrace complex history of rearrangements in cancer genomes

- 1. Healthy chromosome 17
- 2. Translocation into chromosome 8
- 3. Translocation within chromosome 8
- 4. Complex variant and inverted duplication within chromosome 8
- 5. Translocation within chromosome 8

Transcriptome analysis with IsoSeq

CYTHI-EIF3H gene fusion

The genome informs the transcriptome

Data and additional results: http://schatzlab.cshl.edu/data/skbr3/

The genome informs the transcriptome ... and informs the prognosis

Data and additional results: http://schatzlab.cshl.edu/data/skbr3/

PacBio Roadmap

PacBio RS II

\$750k instrument cost 1895 lbs

~\$75k / human @ 50x

SMRTcell

150k Zero Mode Waveguides
~10kb average read length
~1 GB / SMRTcell
~\$500 / SMRTcell

PacBio Roadmap

PacBio Sequel

\$350k instrument cost 841 lbs

~\$15k / human @ 50x

SMRTcell v2

IM Zero Mode Waveguides ~15kb average read length ~10 GB / SMRTcell ~\$1000 / SMRTcell

Oxford Nanopore

MinION

\$2k / instrument I GB / day ~\$300k / human @ 50x

PromethION

\$75k / instrument
>>100GB / day
??? / human @ 50x

Oxford Nanopore sequencing, hybrid error correction, and de novo assembly of a eukaryotic genome Goodwin, S, Gurtowski, J, Ethe-Sayers, S, Deshpande, P, Schatz MC, McCombie, WR (2015) Genome Research doi: 10.1101/gr.191395.115

Our Destiny

Outline

I. Single Molecule Sequencing

Long read sequencing of a breast cancer cell line

2. Single Cell Copy Number Analysis

Intra-tumor heterogeneity and metastatic progression

Single Cell Sequencing

Recombination / Crossover in germ cells

Neuronal mosaicism

Circulating tumor cells

Clonal Evolution in tumors

doi:10.1038/nature09807

Tumour evolution inferred by single-cell sequencing

Nicholas Navin^{1,2}, Jude Kendall¹, Jennifer Troge¹, Peter Andrews¹, Linda Rodgers¹, Jeanne McIndoo¹, Kerry Cook¹, Asya Stepanaky¹, Dan Levy¹, Diane Esposito¹, Lakshmi Muthuswamy³, Alex Krasnitz¹, W. Richard McCombie¹, James Hicks¹ & Michael Wigler¹

S1 S2 S3 S4 S5 S6

LETTER

Copy-number Profiles

Whole Genome Amplification

Whole Genome Amplification

Brian Owens, Nature News 2012

Whole Genome Amplification Techniques

DOP-PCR: Degenerate Oligonucleotide Primed PCR Telenius et al. (1992) Genomics

MDA: Multiple Displacement Amplification Dean et al. (2002) PNAS

MALBAC: Multiple Annealing and Looping Based Amplification Cycles Zong et al. (2012) Science

Data are noisy

Potential for biases at every step

- WGA: Non-uniform amplification
- Library Preparation: Low complexity, read duplications, barcoding
- Sequencing: GC artifacts, short reads
- Computation: mappability, GC correction, segmentation, tree building

Coverage is too sparse and noisy for SNP analysis,

-> requires special processing

Single Cell CNV analysis

- Divide the genome into "bins" with ~50 100 reads / bin
- Map the reads and count reads per bin

Use uniquely mappable bases to establish bins

Single Cell CNV analysis

- Divide the genome into "bins" with ~50 100 reads / bin
- Map the reads and count reads per bin

Use uniquely mappable bases to establish bins

Single Cell CNV analysis

- Divide the genome into "bins" with ~50 100 reads / bin
- Map the reads and count reads per bin

Use uniquely mappable bases to establish bins

2) Normalization

Also correct for mappability, GC content, amplification biases

3) Segmentation

4) Estimating Copy Number

$$CN = argmin\left\{\sum_{i,j} (\hat{Y}_{i,j} - Y_{i,j})^2\right\}$$

5) Cells to Populations

Gingko http://qb.cshl.edu/ginkgo

Interactive Single Cell CNV analysis & clustering

- Easy-to-use, web interface, parameterized for binning, segmentation, clustering, etc
- Per cell through project-wide analysis in any species

Compare MDA, DOP-PCR, and MALBAC

DOP-PCR shows superior resolution and consistency

Available for collaboration

- Analyzing CNVs with respect to different clinical outcomes
- Extending clustering methods, prototyping scRNA

Interactive analysis and assessment of single-cell copy-number variations. Garvin T, Aboukhalil R, Kendall J, Baslan T, Atwal GS, Hicks J, Wigler M, Schatz MC (2015) Nature Methods doi:10.1038/nmeth.3578

CNVs in 100 SK-BR-3 Cells

Understanding Genome Structure & Function

Single Molecule Sequencing

- Now have the ability to *perfectly assemble* microbes and many small eukaryotes, *reference quality* assemblies of larger eukaryotes
- Using this technology to find 10s of thousands of novel structural variations per human genome

Single Cell Sequencing

- Exciting technologies to probe the genetic and molecular composition of complex environments
- We have only begun to explore the rich dynamics of genomes, transcriptomes, and epigenomics

These advances give us incredible power to study how genomes mutate and evolve

With several new biotechnologies in hand, we are now largely limited only by our quantitative power to make comparisons and find patterns

Acknowledgements

Schatz Lab

Rahul Amin Han Fang Tyler Gavin James Gurtowski Hayan Lee Zak Lemmon Giuseppe Narzisi Maria Nattestad Aspyn Palatnick Srividya Ramakrishnan Fritz Sedlazeck **Rachel Sherman Greg Vurture Alejandro Wences**

CSHL

Hannon I ab

Gingeras Lab

Jackson Lab

Tossifov Lab

Lippman Lab

Martienssen Lab

McCombie Lab

Tuveson Lab

Ware Lab

Wigler Lab

Skiena Lab

Patro Lab

SBU

Hicks Lab

Levy Lab

Lyon Lab

Cornell

Susan McCouch Lyza Maron Mark Wright

OICR

John McPherson Karen Ng **Timothy Beck** Yogi Sundaravadanam

NYU

Jane Carlton Elodie Ghedin

PACIFIC

SFARI SIMONS FOUNDATION AUTISM RESEARCH INITIATIVE

ALFRED P. SLOAN FOUNDATION

Thank you

http://schatzlab.cshl.edu @mike_schatz